
Extracting Symbolic Knowledge

from WordNet Glosses

Sonya Anopa

School of Computer Science

Carnegie Mellon University

I. INTRODUCTION

The Scone project seeks to provide an open-

source knowledge-base system for common-sense

reasoning and language understanding [5]. It stores

symbolic knowledge which could be either general

or application specific and allows for inclusion

within other software applications that might need

a knowledge base. The currently available version

includes some core knowledge; however, adding

new knowledge is mostly done by hand, which is

a tedious and time-consuming process.

WordNet is a lexical database for English that

organizes words into sets of synonyms (”synsets”)

and establishes a number of relations between them

within its structure [7]. The most important is the

hypernym-hyponym relation, relating two concepts

as being more general or more specific in rela-

tion to each other, stating that the more specific

concept inherits from the properties of the more

general one. WordNet also provides glosses with

the synsets, which are human-readable definitions

for the synsets. They encode additional knowledge

about these concepts that is not represented within

the WordNet structure.

Therefore, WordNet glosses provide a great

source of information that can be extracted and im-

ported into Scone to expand its knowledge automati-

cally. This research project “reads” WordNet glosses

to extract useful symbolic knowledge structures that

can be added to Scone, which is achieved by using

dependency parsing and identifying structures that

can be extracted, as well as their equivalent struc-

tures in Scone.

Similar work has been done by James Allen et

al., extracting information from WordNet glosses,

but targeting a description-logic system [1]. Their

approach consisted of parsing the definitions such

that they generated a logical form graph encod-



ing relations between concepts and defining con-

cepts within their definitions. Next, the graph was

translated into OWL, the Web Ontology Language,

specifically its description-logic version, by creating

concepts from the graph and defining classes in

OWL. As Scone is not a first-order-logic system,

which description logic builds on, this approach

cannot be used directly or with little modification.

This project creates a Python script that imple-

ments the approach described below for extracting

the knowledge from WordNet and a generalized

script that allows extracting the same type of knowl-

edge from any definitions.

II. APPROACH

A. Method

The approach taken to the problem can be de-

scribed in several steps, each of which will be

explained later in detail.

1. Extract all hypernym-hyponym relations en-

coded and create is-a links between these concepts

in Scone.

2. Extract all meronymy-holonymy relations and

use part of, member of, and makes up relations to

represent part, member, and subtance relations.

3. Extract head of dependency tree with any

constricting dependencies and add another is-a link.

4. Extract any constructs that describe the con-

cept using different terminology and connect using

eq links.

5. Extract constructs that can be converted into

Scone relations and Scone roles and import them.

B. Extracting Hypernym-Hyponym Relations

WordNet can be visualized as a directed graph

of links that connect more general concepts - hy-

pernyms - to more specific concepts that inherit

from the general concepts - hyponyms. While it is

possible to read WordNet data directly from the data

files WordNet provides, NLTK, a Python toolkit,

allows easier access to such data by functioning

as an API that queries WordNet and returns the

necessary information [2]. We use NLTK in this

capacity by traversing through the WordNet ”graph”

and finding all the hypernym-hyponym pairs. The

corresponding structure in Scone is an is-a link that

connects two Scone concepts. Thus, every pair of

concepts is added to Scone as new types if they do

not exist yet and then connected with an is-a link

from hyponym to hypernym. The statement �A is-a

B� means that A inherits all the properties of B. An

example transformation is shown in Figure 1 (note:

curly braces indicate the Scone syntax for concepts).



Figure 1. Extracting hypernym-hyponym relations

C. Extracting Holonymy-Meronymy Relations

WordNet also includes holonymy-meronymy re-

lations as part of its structure [7]. Holonymy is a

relation between two concepts X and Y such that Y’s

are parts of X; meronymy is the inverse relation. We

also use NLTK to obtain these relations and create as

corresponding structures Scone relations. Relations

in Scone allow representing richer information about

the relationship of one concept to another than

just by using is-a links; relationships can be user

defined [5]. WordNet differentiates between part,

member, and substance holonymy/meronymy: these

three turn into {part of}, {member of}, and {makes

up} relations in Scone, respectively. After defining

the relations, pairs of elements from WordNet are

connected by a statement in Scone stating that the

relation exists between these elements, e.g. {engine}

{part of} {car}. In this case, the concepts partici-

pating in the relationship have already been added

to Scone and thus it is not necessary to check

whether they exist already or not. Only meronymy

relations are added to Scone because Scone allows

indicating the existence of an inverse relation within

one statement.

D. Syntactic Dependencies

Prior to moving on to the next section, it is

important to establish a background in dependency

parsing, as that is the main component of the ap-

proach in steps 3-5 of the method.

In dependency grammars, a sentence’s syntactic

structure can be described as consisting of words

and binary relations between those words [6]. This

description can be represented using a directed

graph with labeled edges with nodes as words and

edges as dependencies. An example of a dependency

parse can be seen in Figure 2. In a typed dependency

parse, the edges are labeled from a predetermined

set of dependencies. We use the Stanford CoreNLP

toolkit, which provides a rule-based dependency

parser developed by de Marneffe, MccCartney, and

Manning, and a neural-network dependency parser

developed by Chen and Manning [4], [3]. Both of

these parsers use Universal Dependencies to tag

the grammatical relations, which is a specific set

of dependencies designed to facilitate multilingual

dependency parsing [10].

Dictionary definitions are more constrained than

regular sentences. In particular, they tend to contain

the main word that describes a concept as the head

of the sentence when parsed into dependency rela-

tions; for example, in WordNet ”hydrogen cyanide”

is defined as a ”highly poisonous gas that ...”.



When parsing this definition, the word ”gas” will

be the head of the resulting graph, which is the

main concept that ”hydrogen cyanide” is defined as.

Therefore, adopting this assumption we can rely on

this property to extract the main concepts that define

WordNet synsets and other information. Of course,

the assumption is not always true; to eliminate such

cases some additional processing is performed that

is described in the next section. Other dependencies

of the head word provide a way to restrict the range

of information or to introduce additional information

about the concept being defined. We use both of

these types of information.

Overall, the approach in steps 3-5 of the method

relies on finding the dependency graphs of WordNet

definitions, extracting the useful structures defined

later from these graphs, and importing correspond-

ing structures to Scone.

Figure 2. A dependency graph example from [6].

E. Extracting Parents of Concepts

Scone allows several is-a links to be attached

to a concept, so the parent concept extracted from

the WordNet structure can be complemented with

a parent concept extracted from the definition of

the concept [5]. As the definition is a human-

readable and human-understandable one, the con-

cept that a concept is described in terms of more

likely encodes common-sense knowledge better than

the highly-detailed WordNet structure; therefore, it

makes sense to add that concept with an additional

is-a link as well.

As noted previously, the parent is taken to be

the head of the dependency graph that results from

parsing the definition. As dependency parsers are not

perfect, two dependency parsers are used to identify

the graph. If they agree on the head of the graph,

either result can be used. Otherwise, if they disagree,

we find that usually at least one of the parsers

produces the correct answer. Because the WordNet

synsets we are looking at are nouns, we expect the

parent concept to be also a noun (i.e. concepts are

defined in terms of other concepts, not adjectives,

verbs, or other parts of speech). Therefore, if the

parsers disagree and one of them has a noun at the

head of the graph, we choose that parse. In other

cases we skip this synset to be safe, as we want to

limit the number of potential errors introduced into

Scone. Then we add both the WordNet synset we are

examining and the parent concept into Scone if they

are not yet present and add another is-a link between

them. A small improvement of this process uses



the ’compound’ relation to extract all the parts of a

compound word such as ”phone book” and use that

compound word as the parent concept instead [10].

To make the parent concept as specific as possi-

ble, we also extract adjectives ”around” the head of

the parse tree and create Scone intersection types.

Intersection types are concepts created from a set-

theory-style intersection of other concepts. In other

words, for any concepts that create an intersection-

type concept, it is defined to be all of them at

once. For example, returning to the synset ”hy-

drogen cyanide,” the relevant part of its definition

is ”poisonous gas”. The previous section describes

the way to extract ”gas” and state that ”hydrogen

cyanide is-a gas” in Scone. However, ”poisonous

gas” is a more specific concept; to that end, we

extract ”poisonous” and ”gas,” create corresponding

concepts in Scone, create an intersection type of

”poisonous gas,” and finally create the link ”hydro-

gen cyanide is-a poisonous gas.” Figure 3 depicts

this transformation.

Figure 3. Extracting parents of concepts and creating intersection-
types.

1) Word Sense Disambiguation: In the previous

example, {gas} has {thing} listed as the eventual

parent of the concept, since {thing} is the root node

of the Scone hierarchy, but what is the immediate

parent? When we extract ”gas” from the definition,

we need to connect it to as specific of a parent

concept as possible. Otherwise, we are improving

the problem only by one level: connecting ”gas”

to ”thing” directly tells us later on that ”hydrogen

cyanide” is a ”gas” rather than something unknown,

but ”gas” is essentially unknown.

Finding a specific parent relies on WordNet

as well. Namely, once we have traversed the en-

tire WordNet graph and extracted the hypernym-

hyponym relations, ”gas” can possibly be identified

as a specific WordNet synset. Alternatively, if the

concept already exists in Scone, that concept can be

used. If neither is an option, our backup action is to

add it into Scone with ”thing” as the parent.

Identifying a word as a specific WordNet synset

means searching for synsets that have that English

common name in WordNet, which can be easily

done with NLTK, and then identifying which sense

of the word is used. Word senses are the different

meanings a word can be used in. For example, ”gas”

has 6 WordNet senses: a gaseous state, a fluid in the

gaseous state, gasoline, flatulence, the gas pedal in

a car, and natural gas.



This problem is generally called word sense dis-

ambiguation. While it is not solved in general, some

can be completed when it is constrained enough, as

it is in this case. The process we follow to identify

the sense is below:

1. If there is one sense of the word in WordNet,

pick that sense.

2. As the concept being searched for defines a

WordNet synset, it should be some superclass of the

synset. If one of the senses appears on the synset’s

path to the WordNet root, pick that sense.

F. Extracting Appositional Modifiers

Another dependency that has a corresponding

representation in Scone is the appositional modifier

dependency, or ’appos’ in Universal Dependencies

specification. According to Universal Dependencies,

an appositional modifier of a noun is ”a nominal

immediately following the first noun that serves to

define or modify that noun” [10]. In other words,

a phrase labeled as being an appositional modifier

describes the parent word using some other word

phrase; the two are equally informative descriptions

of the overall concept.

In Scone this case is represented by using an eq

link [5]. The method for importing this structure is

thus as follows: after identifying the head of the

dependency graph in the definition, we can extract

any ’appos’ dependencies attached to that head

word, import them into Scone as a whole concept,

and add an eq link between that concept and the

concept corresponding to the WordNet synset whose

definition we were reading. This process is pictured

in Figure 4. We note again that we also use ’com-

pound’ dependencies to extract the full compound

words connected with the ’appos’ dependencies.

Figure 4. Extracting Appositive Dependencies

Additionally, the extractions described in the pre-

vious part that allow creating intersection types can

also be included when extracting the appositional

modifiers. Thus, rather than simply equating ”Sam”

and ”brother” from the figure above, an intersection

type of ”my” and ”brother” can be created first

to then proceed to an eq link between ”Sam” and

”my brother”. Additionally, inserting ”brother” into

Scone runs into the same problem as described in the

previous section - the parent of this concept has to be

identified. The word sense disambiguation approach

applied previously is also used in this case to solve

that problem.

G. Extracting Roles

A role in Scone allows describing some concepts

as performing some role for other concepts. For



example, if something is said to be ”the office of the

Chair,” it plays the role of the office for the Chair.

This construct allows for more powerful inferences

that the ones possible with is-a and eq links only.

Using it requires creating a new-type-role or a new-

indv-role (individual, referring to instances rather

than classes - usually a proper noun), ”office” in the

example above, and connecting the concept playing

the role with the concept it ”belongs” to (”the Chair”

above) with a link that is created with the ”x-is-a-

y-of-z” function.

In WordNet glosses this idea can be found when

the synset whose gloss we are reading is defined as

playing a role for some other concept. For example,

a brush can be defined as a ”tail of a fox”: so,

the brush’s role is being a tail to a fox [9]. In

dependency graphs this pattern is represented with

nominal modifier and case-marking dependencies,

or ’nmod’ and ’case’ in Universal Dependencies

notation [10]. Here we can use the ’compound’

dependency to extract compound words as well.

Nominal modifiers, when attached to nouns, rep-

resent an attribute of the parent noun. The ’case’

dependency is used to mark words such as preposi-

tions that case-mark the noun they depend on. From

above, ”tail of a fox” has ”tail” as the head word in

the dependency parse, ”fox” is connected to tail with

the ’nmod’ relation, and ”of” is assigned the ’case’

relation. Figure 5 represents this type of extraction.

We only extract such patterns if the word connected

with the ’case’ relation is ’of’ since that is the way

roles in Scone can be represented as English phrases,

but other cases can potentially function as roles as

well. Additional work is needed for a more detailed

approach.

Figure 5. Extracting Roles

It is worth noting that this pattern is less reliable

than the ones previously described. While it is quite

specific, information that does not represent a role

relationship can still have this grammatical pattern.

For example, the definition for ”tuft” in WordNet is

”a bunch of feathers” [9]. According to the pattern,

we can state that a tuft plays the role of a bunch for

feathers, which is incorrect.

H. Extracting Relations

Aside from meronymy/holonymy, WordNet def-

initions provide another source of relations for

Scone. As mentioned before, relations in Scone

describe a user-defined relationship between two

concepts, e.g. ”taller than,” which can be instantiated

with a statement such as ”A taller than B” [5].



A source of such relations in WordNet glosses are

adjectival clauses, named ’acl’ dependencies within

Universal Dependencies; they relate a noun being

modified and a clause modifying that noun [10]. A

common wording in WordNet glosses is ”X VBG

Y,” where VBG is a verb in present continuous form;

for example, podetium is defined as an ”organ ...

resembling a stalk” [9]. The common sense knowl-

edge we are trying to extract from this definition

is the fact that podetium resembles a stalk, along

with the other extractions that can be completed

following the previous sections. To do so, we extract

the ’acl’ dependency - in this case, ”resembling”

and its dependencies, such as ’nmod,’ ’dobj,’ and

’xcomp,’ which refer to words that describe that

verb. After some processing with the Pattern Python

library that allows us to conjugate the verb into

present-tense third-person singular, we create the

relation {resembles}. Finally, we create the nec-

essary concepts for the WordNet synset and the

word connected with ’nmod,’ ’dobj,’ or ’xcomp,’

using word sense disambiguation again to help with

that task, and instantiate the relation by creating a

new statement of the form {podetium} {resembles}

{stalk}. This process is depicted in Figure 6. This

case also uses the word sense disambiguation pro-

cess described above when adding new concepts into

Scone; however, relations do not go through it as,

while they can form a relation hierarchy in Scone,

Figure 6. Extracting Relations

that would require a way to identify relationships

between verbs, which is out of the scope of this

project.

I. Outcome

Overall, after going through the steps of the

method the script outputs Lisp code that can be

loaded into Scone as knowledge. The code contains

not only the concept definitions and the created

links, but it also contains several functions to make

sure Scone knowledge that is already present is not

repeated. For example, if the Lisp code needs to

create a concept, rather than simply using a Scone

function for doing so it calls a separate function that

checks whether such an element already exists; if so,

any additional properties added from the generated

Lisp code are added to that element; otherwise,

a new concept is created. A similar procedure is

performed for creating new relations, is-a links, and

eq links.



III. GENERALIZATION

To generalize the tool, we rely on the same

method as described above, but excluding WordNet.

Given a definition and a word, the generalized script

returns the same type of extractions that the previous

sections perform, but it does rely on WordNet for

word sense disambiguation. Therefore, it is weaker.

This weakness could be diminished by using general

word sense disambiguation relying on the context of

the word in question as a future addition.

IV. EVALUATION

As the goal of the project is to be able to import

a large amount of data at once, the only tangible

performance metric is whether the data extracted can

be imported into Scone without triggering errors,

as Scone checks for inconsistencies while loading

new knowledge in. Unfortunately, while it is clear

that individual cases do load properly, we are still

waiting on the server to finish processing all of the

data, since WordNet contains a lot of it.

V. SURPRISES AND LESSONS LEARNED

The main surprise was the relative ease of the

presented solution, or rather the basic level of

the concepts used. The work described previously

hinges on using a parser for WordNet glosses that

contains within it a higher-level ontology. Using

dependency parsing seems to be a much more basic

approach, and yet it is possible to identify some

useful constructs from it alone. A related surprise

was the fact that WordNet glosses are constrained

enough to contain structures that can be identified

and extracted, though in hindsight that is probably to

be expected. The initial exploration of dependencies

that might be useful was done by exploring the

available dependencies and their typical appearance

in sentences, so it was a bit relieving to see that

those more theoretical descriptions match what is

found in definition sentences.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, this research project introduces an

approach to extracting common-sense information

from definitions by using dependency parsing and

indentifying relevant structures that can be trans-

planted and used in Scone. It produces both a large

import of knowledge and scripts that can be used to

either regenerate that knowledge or identify similar

structures in non-WordNet definitions, though still

outputting Scone forms (both are made available at

this project’s website). If such knowledge is useful

to another system that has similar expressive power,

it would not be too hard to modify the output forms

to reference that system instead.

The current approach can be improved and ex-

tended in a number of ways. Indentification of the

patterns relies on some assumptions that may not



be true and thus might produce incorrect output.

As stated before, the head of the definition may

not truly be the correct word to use as the parent

concept for the WordNet synset being processed.

For example, if X is defined as a ”type of Y” rather

than ”Y,” the head of that definition would be ”type”

rather than ”Y,” which would thus be incorrectly

identified as the parent concept of X. There are 69

such glosses in WordNet out of the 82,221 noun

glosses overall. An improvement would be more

careful about such edge cases.

Another flaw is ignoring negation in definitions.

While it is not common due to the structure of def-

initions, negation completely changes the meaning

of a sentence, meaning some incorrect information

can be extracted if it is ignored. An improvement to

the current approach would need to take such cases

into account.

As mentioned in the roles section, the pattern

used for roles is not necessarily specific enough

to phrases that represent role-like information, nor

does it cover all possible patterns. An investigation

into how the incorrect cases could be identified

and prevented would improve the first part of the

problem. An investigation into other ways role-like

information can be expressed would allow for more

information to be extracted. One example case is the

preposition ”from”: WordNet defines a plant process

as a ”... projection ... from a plant body,” which

means that a plant process is a projection on a body

(this phrase could also be written as ”projection of

a plant body” or ”projection on a plant body”) and

should be identified as a role. However, since only

”of” prepositions are included right now, it will be

ignored.

More substantial improvements could be done

on the variety of patterns and the word sense dis-

ambiguation process. There are undoubtedly more

patterns in dependency graphs whose corresponding

structure in Scone could be identified. The current

patterns could be also extended to become more

complex: for example, including conjunctions would

be a way to extract more information as in some

cases definitions include two words as the ”parent

concept”; those two words are generally joined with

a conjunction.

Word sense disambiguation could use better

heuristics when specifically WordNet glosses are

concerned; it is likely that there are other ways to

restrict a word sense to one of the possible ones.

Both WordNet glosses and general definitions could

benefit from more general word sense disambigua-

tion, for example, focused on the context that the

word in question appears in within the definition and

compared with the usual contexts of the different

senses of this word.



In short, while the project provided an initial

approach and implementation, it could use future

work that builds on the current progress.

ACKNOWLEDGMENTS

The authors would like to thank my advisor, Dr.

Scott Fahlman, for his guidance during this project.

REFERENCES

[1] Allen, J., De Beaumont, W., Blaylock, N., Ferguson, G., &

Orfan, J. (2011). Acquiring commonsense knowledge for a

cognitive agent.

[2] Bird, S., Loper, E. & Klein, E. (2009). Natural Language

Processing with Python. O’Reilly Media Inc.

[3] Chen, D., & Manning, C. D. (2014, October). A Fast and

Accurate Dependency Parser using Neural Networks. In EMNLP

(pp. 740-750).

[4] De Marneffe, M. C., MacCartney, B., & Manning, C. D.

(2006, May). Generating typed dependency parses from phrase

structure parses. In Proceedings of LREC (Vol. 6, No. 2006, pp.

449-454).

[5] Fahlman, S. (n.d.). Scone User’s Guide [PDF].

[6] Jurafsky, D., & Martin, J. H. (2008). Speech and Language

Processing: An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition. Upper Sad-

dle River, N.J, NJ: Pearson Education.

[7] Miller, G. A. (1995). WordNet: A Lexical Database for

English. Communications of the ACM, 38(11), 39-41.

doi:10.1145/219717.219748

[8] OWL Web Ontology Language Guide. (n.d.). Retrieved May 04,

2016, from https://www.w3.org/TR/owl-guide/

[9] Princeton University ”About WordNet.” (2010). WordNet. Re-

trieved May 04, 2016, from http://wordnet.princeton.edu

[10] Universal Dependencies. (n.d.). Retrieved May 04, 2016, from

http://universaldependencies.org/introduction.html


